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Dielectric tensor and magnetic permeability in the weak 
field approximation of general relativity? 

F Pegoraro and L A Radicati 
Scuola Normale Superiore, Pisa, Italy 

Received 2 November 1979, in final form 14 January 1980 

Abstract. We present a treatment of classical electromagnetic theory in the presence of a 
weak gravitational field, both in a vacuum and in a material medium, in terms of an effective 
dielectric and magnetic permeability tensor. We show that the gravitational red shift can be 
interpreted as the work done by the electric field of the light ray against the gravitationally 
induced polarisation current. We derive the dispersion relation for an electromagnetic 
wave in a medium and show that it depends upon the polarisation state of light. 

1. Introduction 

In a series of papers (Pegoraro et a1 1978a, Pegoraro et al 1978b, Iacopini et a1 1979)$ 
we have indicated how the effects due to the interaction between the gravitational and 
the electromagnetic fields could be used to detect gravitational waves. Electromagnetic 
detectors, as an alternative to mechanical and to interferometrical ones, were first 
suggested by Braginskii (Braginskii and Menskii 1971a, b, Braginskii et a1 1974) and 
their approach was subsequently revived by several authors (Kulak 1978, Caves 1979) 
and discussed theoretically by Tourrenc (1975a, b). 

The detectors proposed in papers I and I1 exploit the energy transfer between two 
levels of an electromagnetic resonator induced by the gravitational wave when its 
frequency equals the frequency difference between the levels. In paper I11 we have 
instead suggested the possibility of detecting the birefringence induced in a medium by 
the strains caused by the gravitational wave. In the discussion of both detectors we have 
found it convenient to use the concept of a dielectric tensor associated, in a vacuum or in 
matter, with a gravitational wave. In this way we were able to exploit the analogy with 
electromagnetic phenomena in anisotropic media and with the phenomena which arise 
in electronic devices with time-dependent elements. In this paper we wish to present a 
more detailed derivation of this approach and apply it to the interpretation of some 
optical phenomena in curved space. 

It is well known (Landau and Lifshitz 1962, Merller 1969) that in the presence of a 
gravitational field the propagation of an electromagnetic wave in a vacuum is modified 
in a way which is similar to that caused by a material medium. For example, a ray of 
light is bent by an external gravitational field, in the same way as in a medium with a 
space-dependent refraction index. It seems natural therefore to describe the elec- 
tromagnetic field in the presence of gravitation, both in a vacuum and in a material 

Work supported in part by the Consiglio Nazionale delle Ricerche of Italy. 
$ These papers will be referred to in the following as papers I, I1 and 111 respectively. 
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medium, by means of four (three-dimensional) vector fields, E, B, D and H, linearly 
related by a permeability tensor, in the same way as one does in a medium at rest in the 
presence of gravity. In the latter case the field D is a linear function depending on E 
alone, of the form? 

D i  = &Ek = - ( , ~ ~ ) ; . q j ~ E ~  (1.1) 

where E ~ ,  which in general depends on the space and time coordinates, is the dielectric 
tensor of the matter, and vi’ is the Euclidean metric. A similar relation holds between B 
and H. 

We shall show in 0 2 that in a vacuum, in the presence of gravity, one can define two 
fields, D and H, depending linearly on the electric and magnetic fields through a 
permeability tensor which is a function of the metric field. In particular, for a metric 
with the time coordinate orthogonal to the three-dimensional space manifold, i.e. such 
that gio = 0, we shall show that the relation between E and D is of the form (I, 11) 

D‘ = EgEk =f(g,.)gikEk (1.2) 

where f is a function of the metric tensor g,, which reduces to -1 in Minkowski space, 
i.e. when g,, =qCLY. In this case the geometrical dielectric tensor EG reduces, as 
expected, to the identity. 

It is natural to think of equations (1.1) and (1.2) as the limiting cases of a general 
relation valid when both matter and gravity$ are present. The dielectric tensor relating 
D to E will, in the general case, describe the effects of both matter and gravity and will 
reduce to (1.1) in matter in the Minkowski limit, and to (1.2) in a vacuum in the presence 
of gravity. The total dielectric tensor can then be written as 

Eik = ( C M ) j E g  =f(g,”)(t?M)jgik (1.3) 
where CM differs from the gravity-free tensor because of the strains caused in the 
medium by the gravitational field. A similar relation holds for the magnetic 
permeability. 

So far we have not mentioned the boundary conditions which the electromagnetic 
field must satisfy. Suppose the boundary conditions are time dependent: due to the 
covariance of Maxwell’s equations under general coordinate transformations, it is 
possible to transform them to a reference system where the boundary conditions are 
time independent. This corresponds to changing the metric tensor and therefore to 
changing the dielectric constant. 

When one considers the effect of the gravitational field on an electromagnetic field 
confined by material walls, one has to consider not only the effect described in equation 
(1.2) but also the effect of the motion of the walls caused by the gravitational field. 
Neither the former effect nor that of the walls is independent of the coordinate system. 
It can be shown that the dielectric constant resulting from the combination of the two 
effects is defined modulo the transformations that leave the walls invariant. Throughout 
this paper we shall assume that the reference frame has been chosen in such a way that 
the walls and the matter contained within them will be at rest. 

In 0 2 we shall rewrite the generally covariant Maxwell equations in a vacuum in the 
presence of a gravitational field in a way which is formally equal to the equation for the 

t We shall use the following conventions: Greek indices run from 0 to 3, Latin indices from 1 to 3; repeated 
indices are summed; the signature in Minkowski space is (1, -1, -1, -1); the velocity of light c and Planck’s 
constant h are set equal to one. 
1. The gravitational field is assumed to be weak so we can treat it to first order only. 
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electromagnetic field in the presence of matter in flat space. In the case of a weak 
gravitational field we will derive the expressions for the 'polarisation' charge and 
current and show that, in terms of them, the Lagrangian of the electromagnetic field in a 
vacuum takes the familiar form of the Lagrangian in flat space for an electromagnetic 
field interacting with a field-dependent current. 

In § 3 we shall apply the formalism developed in the previous section to show that 
the red shift caused by a static gravitational field can be interpreted as arising from the 
work done by the electric field of a light packet against the polarisation current induced 
in a vacuum by the gravitational field. Although the gravitational potential is static, in 
the frame where the time coordinate coincides with the proper time of the source and of 
the detector, the refraction index and the amplitude of the polarisation current are time 
dependent, thus giving rise to an energy transfer. 

The dielectric properties of a medium under the influence of the gravitational field 
are discussed in § 4. Besides the effects, already analysed in § 2, which are due to the 
change of geometry, one must also take into account in this case the modification of the 
dielectric tensor caused by the strains induced in the medium by the gravitational field. 

In 0 5 we derive the dispersion relation satisfied by an electromagnetic wave 
propagating in a medium under the influence of a gravitational field. We shall show that 
a material medium becomes birefringent and this effect, as has been shown in paper 111, 
can be applied to the detection of gravitational waves. 

2. The gravitational permeability tensor of the vacuum 

Let us consider the electromagnetic field in the presence of an external gravitational 
field. The generally invariant action of the electromagnetic field in a vacuum is (Landau 
and Lifshitz 1962) 

A = 2 ( x )  dxo dx' dx2 dx3 (2.1) 

9 ( x )  = (16r)-'d< F,,(x)F""(x). (2.2) 

J 
where 2 ( x )  is the Lagrangian density at the point x = (xo = t, x', x2, x3): 

Here g = det g,, is the determinant of the metric tensor, and FCIy(x) is the covariant 
electromagnetic field tensor related to the electric and magnetic fields E and B in the 
usual way: 

6 ( x )  = -Fot(x), B ' ( x )  = -iE1'k&k(X), (2.3) 

where = is the completely antisymmetrical Ricci symbol. 
To solve Maxwell's equations obtained from the Lagrangian (2.2), one needs to 

specify the boundary conditions satisfied by the fields E and B. In general these 
conditions are time dependent: we shall assume that the coordinate system has been 
chosen in such a way as to eliminate the time dependence of the boundary conditions. 

By analogy with the method (Weisskopf 1936) which is used to define the material 
vectors D and H in a medium, we introduce the tensor density H g ,  

(2.4) ~g = 8 r  a2?/aFw, = C g F C L Y ( X ) ,  

D ' (x)  = Hg ( x ) ,  H l ( X )  =iE,,kHJGk (x). (2.5) 

and the two vector fields 
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One easily verifies that D i  and Hi satisfy the first set of Maxwell’s equations, as do 
their counterparts defined for a material medium. Equation (2.4) can be written as a 
linear relation between H r  and FWy : 

H g  = $ c g ( g  wug ” - g ’Og ”’)Fa@ = KF* (gpu )FppI (2.6) 
The Lagrangian (2.2) then reads 

1 I 
1 1 9 = - FF,Hg = - F K FyupFup 

1 6 ~  1 6 ~  I ru 
(2.7) 

and is therefore formally equal to the Lagrangian of the electromagnetic field in the 
absence of gravity in a medium with a geometrical permeability tensor KG which 
depends upon the metric tensor gw,. 

We shall only discuss the effects due to the gravitational permeability of the vacuum 
in the weak field approximation, i.e. to first order in the deviation h,, of the metric 
tensor from the Minkowski tensor vF,:  

h @”, (2.8) g ’ L y  = y - g,, = vFv + h,,, 
where, consistent with the weak field approximation, h”“ = vFnvYPhap. 

To first order in h,, the permeability tensor reads: 

K T P  = $ ( v w v y P  - r l ” a v F P ) _ X F B  (2.9) 
where the susceptibility XG is a linear function of hpu: 

w a p  = $[h @‘av ’ p  + h ”pv - h &@ - h @pv - $hpuvpPD(v wav ’ p  - vypv  ’ p ) ] .  (2.10) XG 

Using (2.9) and (2.10) the Lagrangian (2.7) takes the form 

F, , , x~@Fpp  = 9o-$h”” TFY. (2.11) 
1 ,a 1 

-iP=-FF,v ~ y p F a p  -- 1 6 ~  1 6 ~  

The first term, Z0, represents the electromagnetic Lagrangian in flat space, whereas the 
second is the ‘minimal’ interaction between the metric field hF” and the electromagnetic 
energy-momentum tensor T,, evaluated to zero order in h,, : 

(2.12) TFy = ( ~ T ) - ~ ( F ~ ~ T ~ ~ F ~ ~  - h w J a p ~  O P  v p U F p u ) .  

The interaction term in equation (2.11) can be put in a different form by defining the 
polarisation current induced in a vacuum by the gravitational field: 

(2.13) 

In terms of J& the Lagrangian (2.11) can be written in the more familiar form 

9 = so - $JEA, (2.14) 

where A ,  is the vector potential. The Lagrangian (2.14) is obtained from (2.11) by 
integrating the interaction term by parts and by dropping a four-dimensional diver- 
gence. The factor $ in the interaction term arises from the linear dependence of JB on 
the vector potential A,  : indeed when 9 is varied with respect to A,, the current cannot 
be kept constant. 

In terms of the vectors D, H, E and B, equation (2.6) reads: 
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where 
= -2K;oi = - , , / rg (goog i j  - g i o g o j ) ,  

(p&j = $€iimKfcmP4E,j = a s ,  € i l m g l p g m q E p q j ,  (2.16) 
ik 01 A ' j  = K:lm€lmj = g g E l k j .  

In three-dimensional language the polarisation charge and current densities are 
a .. 

ax 

a a 
a x 1  at 

4i7pG = - 7 (7 "Ej + ~ g E j  + A 'jB'), 

(2.17) 

Equations (2.15) and (2.17) are reminiscent of the relations which occur in the case of a 
moving material medium. In particular, the terms proportional to A are the equivalent 
of those arising from the drag velocity. 

The above relations take a simpler form in the case of a time-orthogonal system 
(Mprller 1969), i.e. when gio = 0, which is the equivalent of a medium at rest. In these 
systems A i j  = 0,  D depends only on E and H only on B :  

(2.18) D i = - ( - g )  g g E j = ~ g E j ,  

To obtain these relations, we have written g = goo det g,, and used the identity 

4 r J &  = +(pG1)kl)B1 -EIA ' k ] + - [ ( ~ / "  + ~ g ) E j  + A  'jB']. 

Hi = -(-g)-"2googijB' = (pG')ijB! 1 j 2  00 i j  

Eijkgi'gkmelmn = (2/det g r s ) g i n  (2.19) 

which holds when g i o  = 0. 
Equations (2.18) show that the two fields D and H defined by (2.4) and (2.5) are 

related to E and B in the same way as in a material medium at rest. However, the 
'medium' has the special property that 

(2.20) 

The formalism developed in this section has been applied in papers I and I1 to the 
case where the metric field g,, is due to a monochromatic gravitational wave with 
amplitude h and frequency Q. In this case the dielectric tensor cG is a sinusoidal 
function of time. As a consequence, the capacity (and the inductance) of an elec- 
tromagnetic cavity varies with time as C = Co(l + h cos Of). When the cavity forms part 
of a two-level resonator with an appropriate geometry, the time dependence of the 
capacity establishes a parametric coupling between the two levels and energy is thus 
pumped from one level to the other. 

The energy transfer between the two levels can also be understood in terms of the 
polarisation charge and current. Consider an electromagnetic cavity with two levels 
with frequencies w, w + O and let us suppose that, initially, only the lower frequency is 
excited. The second equation (2.17) shows that under the effect of a gravitational field 
oscillating at frequency Q, a polarisation current is produced containing the frequency 
w + Q. This current excites the field of the upper level in the cavity. 

E g  =-J-gg00gijI:-71f+Z(Trh,,)7ij+hii ' '  1 

3. The Poynting theorem and the gravitational red shift 

In paper I we have generalised Poynting's theorem to the case of an electromagnetic 
field in the presence of a weak gravitational field described by a time orthogonal metric 
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tensor. In this section we shall show that this theorem provides a natural interpretation 
of the red shift. It will appear that the reddening of the photons propagating in a 
time-independent potential 4 can be attributed to the work done by the electric field of 
the wave against the polarisation current introduced in the previous section. 

Maxwell's equations in a vacuum in a gravitational field are? 

V A E = -aB/at, v ~ ~ = a D / a t ,  (3.1) 
where the fields D and H are given in terms of E and B by equations (2.15). From 
equations (3.1) one derives Poynting's theorem in the usual way: 

(3.2) 
~ E . D + B . H  E A H  -1 1 
at 8 7 ~  4lT 8lT 41T 

+ V  .-=- ( E ~ ~ E  - ~ f i  G ~ B )  - - EAB - 

where the dot denotes the derivative with respect to time. Equation (3.2) differs from 
equation (2.13) of paper I by the term proportional to A ,  which was absent there because 
of the use of a time-orthogonal metric. 

We now want to use equation (3.2) to determine the change in the proper frequency 
of a photon propagating in a weak, static gravitational potential 4, which we shall take 
to depend only upon x 3  = z .  The photon proper frequency is measured in a frame where 
the emitting and the absorbing atoms are at rest, the potential is time independent, and 
the time coordinate coincides with the atoms' proper time. These conditions are 
satisfied by a metric tensor of the form 

I g," = L 0 -1 0 

0 0 u(z,  t )  
0 - 1 0 0  

u(z,  t )  0 0 -1 

(3.3) 

where 

d 
dz 

u(z,  t) = t-(1 + + ( z ) ) .  (3.4) 

With this choice for the metric, the permeability tensors (2.16) become 

(3.5) ' ik 01 A ' j  = 17 g Elkj  E ii - - - ,, 11 = 
i f , 

so that the terms in brackets in the right-hand side of (3.2) vanish. We remark that 
although the gravitational potential 4 is time independent, the metric tensor (3.3), and 
therefore the drag velocity A, depend explicitly upon t. 

Before deriving the expression for the red shift, we want to give an intuitive 
interpretation to the remaining source term in equation (3.2) by re-expressing it in 
terms of the Poynting vector and the gravitational acceleration. By using (2.16) we 
obtain, to first order in 4, 

where 

S" = E " ' ~ E ~ H ~ / ~ I T  

P The tensor notation for C A  E is ( C A  E)' = -eiik(a/axi)Ek. 

(3.7) 
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is the Poynting vector and 

a, = -a4/axm (3.8) 
is the gravitational acceleration. The term -( 1/4r )EAB therefore represents the rate 
of work per unit volume done by the electromagnetic field against the gravitational 
field. 

Alternatively the above result can be expressed in terms of the polarisation current. 
In our frame of reference the polarisation current (2.17) depends only upon A (see 
equation (3.5)). The rate of work done by the electric field E against the polarisation 
current is thus 

at (3.9) 

Using Maxwell’s equations, it is easy to prove that equation (3.9) can be rewritten as 

(3.10) 

To derive the gravitational red shift, we consider a wave packet emitted at time t = 0, at 
z = to with frequency w(zo).  Integrating equation (3.2) over space and using (3.6), we 
obtain 

dW/dt=  d 3 x S . a = P . a  (3.11) I 
where W and P a r e  the wave packet’s energy and momentum. In the geometrical optics 
approximation equation (3.11) implies a relation between the wave packet central 
frequency w and the progation vector k (Landau and Lifshitz 1962, p 148) of the form 

dwldt = k. a. (3.12) 

Integrating equation (3.12) over the wave packet’s path from the point of emission zo to 
that of absorption zl, we obtain, with the help of (3.8), 

(3.13) 

which is the well known expression for the red shift. The change of frequency can be 
traced back to the time dependence of the metric tensor in the frame where t at the 
positions of the emitting and absorbing atoms coincides with their proper time. 

4. The electromagnetic field in a material medium 

We want now to generalise the discussion of 0 2 to the case where a medium is present. 
In this case an external gravitational field, besides changing the space geometry as in the 
vacuum case, modifies the dielectric and magnetic properties of the medium as a result 
of the elastic strains caused by the gravitational field itself. 

In the absence of gravity, and in Minkowski space, a medium at rest is described by 
the dielectric and magnetic permeability tensors E M  and p~ which relate the vectors D 
to E and B and H: 

D = - ( E M ) ~ T  jkEk, Hi = -(pL1)jqjkBk. (4.1) 
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Equations (4.1) have been written in a somewhat pedantic form to preserve the 
distinction between covariant and contravariant vectors which is essential for a 
generalisation to curved space. 

As a first step towards this goal we write (4.1) in a form valid in any uniformly 
moving system: 

H G  = K ~ ~ * F , ~  (4.2) 

(4.3) 

where H E  is an antisymmetric tensor with components 
H , = ’  HIk D’ = HG, I 2Eijk M, 

and K M  is the matter permeability tensor in the absence of gravity. Equation (4.2) 
reduces to (4.1) if, in a medium at rest, the components of the material permeability 
tensor are given by 

with 

(4.5) K Z k  = o =  K M  jkOi , 

As expected, equations (4.2) and (2.6) coincide in the special case eM = ,uM = I ,  
g,, = qFV, i.e. for Minkowski space in a vacuum. It is then natural to consider (4.2) and 
(2.6) as special cases of a general relationship, valid for a medium in the presence of 
gravity, connecting the tensor H”’” to the electromagnetic tensor Fup : 

H”” = K ” y u f i ~ u p .  (4.6) 
Here K ,  the total permeability tensor, takes into account both matter and gravity 
and is obtained from K M  by the following prescriptions: 

(i) multipiy by c g  to account for the change of the volume element; 
(ii) replace the Minkowski tensor v”,, by the metric tensor g&,; 
(iii) modify the dielectric and magnetic properties of the medium to account for the 

In particular, if, in the system where the medium is at rest, the metric is of the form 
strains generated in the medium by the gravitational field. 

gio = 0, equation (4.1) gives 

where gM and fiM are the dielectric and magnetic permeability tensors in the presence of 
gravity. These tensors differ from their unperturbed (i.e. without gravity) values by 
terms which, in the linear approximation, are proportional to the strains caused in the 
medium by gravity. In particular for an isotropic medium, with (eW);= € S i ,  (pM)j= E.(.& 

( E  and ,u being two scalars), we can write (Born and Wolf 1959, Landau and Lifshitz 
1960) : 

(4.8) 

In equation (4.8) E ,  ,u and the elasto-optical constants a l ,  a2, bl,  b2, vary with the 
frequency w of the electromagnetic field. The elasto-optical constants describe the 
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electric and magnetic responses of the medium to the mechanical strain UiP The latter 
represents instead the elastic response to the gravitational field and depends upon the 
acoustic frequencies of the medium. Equation (4.8) is valid provided that the frequency 
w of the electromagnetic field is much larger than the acoustic frequencies. 

The strain tensor Uii is defined by 

U, = $(ari/ax’ + aZj/ax’), (4.9) 
where 

&(x) = Ti&-J(X) +&x’ (4.10) 

is the effective displacement field which takes into account both the coordinate 
displacement ti and the change of the metric. 

The strain tensor U satisfies the equation (see equation (A.10) of paper I) 

(a2/at2 - cfVZ) uij = --Roioj (4.11) 
where R is the Riemann tensor and cs is the sound velocity of the medium. 

In paper I11 we have considered the solutions of equation (4.11) in the case where 
the Riemann tensor is due to a monochromatic gravitational wave of frequency $2. In 
this case, 

(4.12) 
where h:: is the correction to the metric tensor in the transverse traceless gauge 
(Misner et a1 1972). To solve equation (4.11) we expand Uij into its eigenmodes (which 
depend upon the shape of the body), 

R~~~~ = $0”;’ = $ $ 2 2 ~ i j  ,-‘Or, 

Uij =I A,(t)U!Y’(x), 
n 

and obtain for the amplitude of the nth eigenmode 

(4.13) 

(4.14) 

where w,, is the frequency of the n th eigenmode and V is the volume of the body. The 
amplitude A,, is proportional to the amplitude of the gravitational wave. Since 
Tr Aij = 0, it follows from (4.14) that only quadrupole oscillations can be excited. 

5. Polarisation effects 

It has been suggested in paper I11 that the birefringence gravitationally induced in a 
medium can be used to detect gravitational waves by measuring the difference between 
the phase velocities of two orthogonally polarised light rays which propagate parsllel to 
a gravitational wave. In this section we derive the dispersion relation on which the 
method of paper I11 is based. We show that only in a material medium can the 
anisotropy induced by a gravitational wave give rise to a birefringence proportional to 
the amplitude of the gravitational wave. We shall derive the dispersion relation for the 
case of a slowly varying gravitational field. Equations (3) and (4) of paper I11 follow as a 
special case when the gravitational field is that of a gravitational wave. 

Let us consider a light beam of frequency w and wavevector k propagating in a 
medium. 
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We shall consider the geometrical optics limit, that is we shall assume delat << w and 

Let us consider a medium at rest in a time-orthogonal reference frame. From 
dq'dx << ki (with similar relations for p ) .  

Maxwell's equations and from the relations (4.7) one obtains 

'Di = Eii'klCL 2. mnpkEE;iDq, kiD' = 0. (5.1) 

If we take ki along the third axis, ki = (0, 0, k), equation (5.1) depends only on the 
components of E-' and g-' in the (1,2)-plane. We can therefore rewrite it in the form 

(5.2) w '0 = k (Pk - ' ) R ( PE -')D 

where P is the projector on the (1,2)-plane and the subscript R denotes a 71/2 rotation 
around the third axis. This rotation, which is represented by e i i3 ,  takes into account the 
fact that the magnetic field H is orthogonal to the field D. 

We shall first consider the case when the electromagnetic wave propagates in a 
vacuum, i.e. in a medium with E = p = EG (since E" = C; =I ,  see equation (4.7)). Using the 
identity 

ARA = (det A)I, (5.3) 

which is valid for any 2 x 2 symmetrical matrix, equation (5.2) becomes 

w 2 D  = kZ det(PE6')D. (5.4) 

This shows that in a vacuum, due to the equality E = p, the dispersion relation is 
independent of the polarisation state and therefore no birefringence is produced. Using 
the explicit expression of EG (see (2.18)), we obtain 

det(PEG1) = g33/g00. (5.5) 

One therefore recovers the dispersion relation for a photon in a gravitational field, 
namely k,k = 0. 

Let us now consider the effect of a material medium where in general E # p. We 
shall assume for simplicity that the propagation vector ki of the electromagnetic wave 
coincides either with a principal axis of gik, or with one of E" and b. If gik is the field of an 
unpolarised gravitational wave, the first possibility occurs when the light ray propagates 
parallel to the gravitational wave. Under this assumption equation (5.2) can be 
rewritten as 

w '0 = k * (p& -' ) R(PE"-')D = k (P& -')R (Pp c' )R(P€ ) (PE"-')D 

= k[det(PEG')]. (P@-l)R(PE-')D. (5.6) 

To derive this equation we have used the equality EG = pG and the identity (5.3). We 
notice that because of our assumption about the principal axes of gik or E and c, only the 
(1,2)-components of E and & enter equation (5.6). In the special case of a gravitational 
wave, det(PEG') = 1 and equation (5.6) is equivalent to equation (4) of paper 111. 

Equation (5.6) shows that in general the dispersion relation depends upon the light 
polarisation state. Thus a medium, which in the absence of a gravitational field is 
isotropic, becomes in general birefringent. This birefringence is due to the strains 
induced by the gravitational field in the medium. 
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